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A B S T R A C T

Background: Normal tension glaucoma (NTG) is a multifactorial disease in the pathogenesis of which intraocular
pressure (IOP)-independent factors play a key role.
Main text: There is considerable evidence that impairment of the ocular blood flow (OBF) is involved both in the
onset and progression of this disease. With the development of the hypothesis of OBF in NTG, various imaging
techniques have been developed to evaluate the OBF and blood vessels. Moreover, vascular dysregulation, which
is a main factor in Flammer syndrome, was frequently observed in NTG patients. Disturbed OBF leads to increased
oxidative stress, which plays an important role in the pathogenesis of glaucomatous optic neuropathy. These
results suggested that IOP-independent management may provide alternative treatment options for NTG patients.
Conclusions: In this review, we mainly focus on the mechanisms of the abnormal OBF in NTG.
1. Introduction

Glaucoma is a group of disorders characterized by cupping of the
optic nerve head (ONH) and visual field damage.1 As the leading global
cause of irreversible blindness, it is predicted that globally the number of
those with glaucoma will increase to 111.8 million by 2040, the majority
of whom will be in Asia and Africa.2 Glaucoma can be classified as
open-angle glaucoma or angle-closure glaucoma according to the
morphology of the anterior chamber angle. The common characteristics
of all forms of glaucoma are the loss of retinal ganglion cells (RGCs),
thinning of the retinal nerve fiber layer (RNFL), and increasing excava-
tion of the optic disc.3 Open-angle glaucoma comprises the majority of
cases in the United States and Western Europe, whereas angle-closure
glaucoma predominates in China and other Asian countries.4 Normal
tension glaucoma (NTG), a special subtype of primary open-angle glau-
coma (POAG), is a progressive optic neuropathy with an intraocular
pressure (IOP) within the normal range.5 In the absence of the major risk
factor for glaucoma, that is, an elevated IOP, NTG presents a clinical
challenge.

NTG is a form of multifactorial optic neuropathy whose etiology re-
mains strongly debated. To date, no single factor has been able to fully
explain its pathogenesis. The main factors contributing to NTG-related
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glaucomatous optic neuropathy (GON) include vascular factors and
ocular blood flow (OBF), the translaminar pressure gradient, and im-
mune and genetic factors.6–8 These factors can lead to RGC loss and
axonal damage through several pathways. Among the various risk factors
besides IOP, vascular factors have been recognized as a significant
component in NTG pathogenesis, because many studies have found that
the vascular structures of NTG patients are altered or dysregulated.6 In
1959, Harrington first noted that impaired blood flow can cause optic
nerve vulnerability to glaucomatous damage, even at a statistically
normal IOP setting.9 Subsequently, various research groups have dis-
cussed the vascular theories of glaucoma, particularly in NTG.

The aim of this review is to summarize the current understanding of
risk factors for NTG and briefly describe the technologies for clinical
measurements of OBF. The role of the vascular factors and OBF in NTG
pathogenesis and some of the new treatments will also be discussed.

2. Risk factors for NTG

To identify risk factors for GON, most researchers tend to focus on
NTG patients. In NTG, factors other than IOP are likely to have a clearer
role in GON. It should be noted that the risk factors for GON in NTG also
play a role in high tension glaucoma (HTG), but at a lower frequency. A
mer).
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meta-analysis showed that disc hemorrhage, myopia, sex, aging, and
some systemic vascular diseases were prognostic for NTG progression.10

2.1. Intraocular pressure

Clinical studies have shown that IOP is the main risk factor in the
development and progression of both HTG and NTG.11,12 Although
reducing IOP does not always prevent NTG development, it does slow it
in many cases.13 With the exception of the IOP level, the IOP fluctuation
also appears to be related with the development of NTG. Lee et al. found
that IOP fluctuation is related to the structural deterioration in NTG,
particularly with progressive thinning of the peripapillary RNFL.14

However, the relationship between IOP fluctuations and glaucoma pro-
gression remains greatly debated.15

2.2. Ethnic origin

In general, as damage occurs or progresses at a lower IOP, there will
be a higher probability of additional risk factors being involved. In Asia,
the prevalence of POAG is approximately 2.34%.16 The proportion of
NTG varies for different countries. In previous epidemiological studies in
Asia, NTG accounted for the majority (52%–92%) of open-angle glau-
coma,17 while in Western countries, NTG comprises approximately 30%
of POAG patients.18 This variation may be caused by both genetic and
environmental components.

2.3. Myopia

In Asians, the high prevalence of high myopia may be partly
responsible for the high incidence of NTG.18 Myopia has been demon-
strated to be a risk factor associated with glaucoma progression.19,20

However, some other studies indicated that this may not be the case.21,22

Lee et al. found that these contradictions were attributable to different
study populations. In addition, they suggested that progression of NTG
and optic disc changes may observably influence glaucomatous eyes with
myopia but have no effect on emmetropia or hyperopia.14 The underlying
mechanism linking NTG and myopia remains unclear. One possible
explanation is that an increase in the myopic axial length may increase
the sensitivity of myopia to glaucomatous damage.23

2.4. Age and sex

Age is a statistically important clinical risk factor for the severity of
glaucoma in NTG eyes.17 This could, in theory, indicate that older in-
dividuals may display increased vulnerability to glaucomatous damage.
NTG occurs more often in women.24 This also fits to the observation that
the Flammer Syndrome is more common in females.25

2.5. Disc hemorrhage

It has been reported that disc hemorrhage is an important negative
prognostic factor for NTG and may be a marker of progressive damage to
the RNFL, leading to deterioration of visual field function.26 Nonetheless,
the mechanism underlying the onset of disc hemorrhage has not been
fully elucidated. Furlanetto et al. demonstrated that a history of migraine,
narrower baseline neuroretinal rimwidth, systemic β-blockers usage, low
mean systolic blood pressure, and low mean arterial ocular perfusion
pressure (OPP) are risk factors for disc hemorrhage development in NTG,
which emphasizes the importance of IOP-independent factors in the
pathogenesis of NTG disc hemorrhage.27 Disc hemorrhages, which are a
sign of partial vascular abnormalities, tend to be associated with NTG.28

In addition, Nitta et al. found that the occurrence of disc hemorrhage may
contribute to structural deterioration and the reduction of the radial
peripapillary capillary vessel density in NTG patients.29 On the one hand,
Quigley et al. demonstrated that disc hemorrhage is caused by micro-
vascular disruption during back-bowing of the lamina cribrosa.30 On the
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other hand, other reports showed that systemic vascular diseases,
including migraine, diabetes, and hypertension, can cause optic disc
damage and increase the incidence of disc hemorrhage.31,32 With respect
to diabetes, previous studies have shown that it may increase the risk for
open-angle glaucoma.33,34 These observations are supported by the evi-
dence of impaired autoregulation during NTG development.35,36 In
summary, these results suggest that OBF plays an important role in NTG.

3. Anatomy and clinical measurements of ocular blood flow

3.1. Anatomy of the optic nerve blood supply

The blood supply of the eye primarily arises from the ophthalmic
artery, which is a branch of the internal carotid artery. The ONH is the
main structure affected in glaucomatous optic atrophy. The superficial
nerve fiber layer of the ONH is mainly supplied by the branches from the
central retinal artery. The prelaminar region, immediately posterior to
the nerve fiber layer, is mainly supplied by branches from the short
posterior ciliary arteries and vessels originating from the arterial circle of
Zinn-Haller.35,37,38 OBF reduction might be a key factor in GON patho-
genesis in NTG.39 Previous studies showed that glaucoma patients have a
reduced OBF in various ocular tissues, including the retina, choroid, iris,
and optic nerve, particularly in cases of NTG.35,40 Xu et al. determined
and compared the changes in the retinal vasculature in HTG and NTG by
optical coherence tomography angiography (OCTA), and found that the
density of perfused retinal vessels was significantly more reduced in NTG
than in HTG eyes.41

3.2. Assessment of ocular blood flow

A variety of different methods for measuring OBF have been
described in previous research, including laser speckle flowgraphy, color
Doppler imaging (CDI), Doppler Fourier domain optical coherence to-
mography (Doppler FD-OCT), fluorescein angiography, and OCTA
among others.37 Although many techniques have advanced in recent
years, there remains no gold standard. Each techniquemeasures different
aspects of OBF, but each has certain limitations.

3.2.1. Color Doppler imaging
CDI is a widely used method for the analysis of parameters of the

retrobulbar vasculature, including blood flow velocities, the pulsatility
index, and the resistive index.42 Although CDI is an outstanding approach
to assess the large arteries, it has limitations in quantifying vessel di-
ameters and calculating total RBF.43 Matthiessen et al. suggested that CDI
measurements had a good reproducibility, and proved that CDI appears
to be an appropriate method for examining retrobulbar blood flow ve-
locities both in clinical practice and research.44 Numerous studies have
evaluated ocular hemodynamics by CDI in POAG and NTG patients.45,46

These reports confirmed, to some extent, the changes in the retrobulbar
flow velocity in glaucoma.

3.2.2. Doppler Fourier domain optical coherence tomography
OCT is a noninvasive technique with high-resolution cross-sectional

imaging, and is commonly used in glaucoma evaluation.47 Recently, with
the development of Doppler FD-OCT, visualization and quantification of
blood flow have become possible. OCT can also detect the Doppler shift
of reflected light, which provides information regarding flow and
movement.48 The speed of OCT imaging has been greatly improved due
to the development of Fourier domain techniques.49 The main advantage
of this technique is the ability to rapidly measure the total retinal blood
flow.50 There are still some limitations of Doppler FD-OCT, including
phase wrapping artifact in vessels with high blood flow velocities and
measurement errors caused by eye motion. Wang et al. found that the
total retinal blood flow significantly decreased in eyes with glaucoma
and the deficit in blood flow correlated well with the severity of the vi-
sual field loss as shown by Doppler FD-OCT.51 This new technique can
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routinely measure total retinal blood flow in a clinical setting. It will be
helpful in diagnosing and treating optic nerve and retinal diseases related
to poor blood flow.

3.2.3. Fluorescein angiography
Angiography visualizes the penetration of fluorescent dye through

ocular vessels. Fluorescein angiography has traditionally been used to
assess the microvascular supply of the prelaminar region of the optic disc
and the peripapillary choroid.52 It has advantages related to investigating
the retinal circulation in more detail as well as the ONH circulation, but
has limitations in analyzing choroidal circulation.35,42 A number of
studies have used fluorescein angiography for the qualitative and quan-
titative evaluation of angiography, showing the hemodynamic changes in
patients with POAG, NTG, or primary angle-closure glaucoma.53,54

Plange et al. found that the retinal arteriovenous passage time was pro-
longed in NTG patients.55 In addition, retinal hemodynamics was
correlated with OPP and systemic blood pressure (BP), which may reflect
impaired autoregulation in NTG.

3.2.4. Optical coherence tomography angiography
OCTA is a relatively newly developed imaging technique that allows

the detection of blood flow through the motion contrast generated by
erythrocytes. It allows noninvasive visualization of the microcirculation
in the ONH, peripapillary retina, and macula.56 OCTA can provide
quantitative, rapid, and detailed information about the microvasculature,
and has thus emerged as a promising method for glaucoma assessment
and management.57 Liu et al. first reported that a lower peripapillary
vessel density were found in glaucomatous eyes compared with normal
eyes by OCTA.58 Scripsema et al. also found a significant decrease of
peripapillary capillary densities in NTG eyes when compared with
normal eyes.59 It appears that the vascular density decreased with the
increase of glaucoma severity. Some differences were found between the
NTG and POAG eyes, suggesting that there may be pathophysiological
differences with different effects on the area around the ONH and peri-
papillary. Additional studies are required to elucidate these differences.60

Current OCTA studies support its potential in clinical practice for the
diagnosis and staging of glaucoma and in evaluating its progression,
thereby providing a better understanding of its pathogenic mechanisms.

4. The role of ocular blood flow in NTG

Some studies have shown that an inadequate blood supply can lead to
RGC loss.61–63 Chronic ischemia and reperfusion damage have been
considered to be involved.35 The reduction of OBF is the result of mul-
tiple factors. Some experts have focused on OPP, which is an important
parameter that determines the perfusion of the ONH.64–66 OPP is calcu-
lated as arterial BP minus IOP. This calculation was primarily based on
animal studies.67 It was based on two assumptions: that the ratio of the
arterial BP in the eye to the BP at the arm is constant, and that RVP is
equal to the IOP. From today’s point of view, however, neither of these is
quite correct. Although the calculation of PP described above was not
optimal, there is a significant correlation between PP and glaucoma
progression. Besides, when assessing the risk status of an individual pa-
tient, separate consideration of RVP, BP, and IOP is more meaningful and
helpful.68 As summarized in several reviews, low BP compromises the
OPP at the optic disc and thus leads to glaucomatous damage.35,36

Systemic hypotension has been demonstrated to be a clear risk factor
for glaucomatous damage.69 In the Baltimore Eye Study, after 9 years of
follow-up, a cohort study indicated that risk factors for POAG develop-
ment were lower systolic BP, systolic OPP, diastolic OPP, and mean
OPP.70 Previous studies have also shown that a low partial pressure (PP),
particularly a fluctuating PP, is considered to be a risk factor for GON
development.66,71 A fluctuating OPP can lead to an instable OBF and
oxygen supply and, therefore, to oxidative stress, which may be of rele-
vance in glaucoma pathogenesis.72 Charlson et al. suggested that the
duration and magnitude of the nocturnal BP decline, particularly when
3

10 mmHg lower than the daytime BP, were risk factors for visual field
deterioration in NTG patients.73 In a prospective longitudinal study of 65
NTG patients, a low nocturnal diastolic OPP at baseline was proposed to
be an important predictive factor for visual field deterioration at 5
years.74 A retrospective study aimed to investigate the long-term clinical
course of NTG patients.75 It was found that a low OPPmay exacerbate the
progression of visual field loss. The dipping pattern was also associated
with glaucomatous visual field deterioration, and a more pronounced
dipping was associated with greater visual field deterioration. NTG pa-
tients exhibit significantly greater nocturnal BP dips, which may in turn
lead to OPP fluctuation with ischemic episodes at the ONH, and were
associated with the progressive visual field defect.76 Consequently, sys-
temic hypotension, particularly nocturnal BP dips, may play an important
role in disease progression in NTG individuals. However, not all patients
with a low BP will progress.77 Whether or not an impairment occurs as a
result of a low BP depends on its autoregulation.

Orgul et al. reported that 65% of NTG patients with systemic hypo-
tension suffered from vasospasms.78 This suggests that there is an asso-
ciation between low BP and vasospastic disorders, which may reflect the
additional effect of vascular dysregulation. The blood flow is not only
determined by the PP, but also local resistance. An increase in vein
resistance will increase venous pressure, thereby reducing the PP.79

There are complex interactions between OBF and OPP with local flow
resistance, and the response to a reduction in OPP is the regulation of
resistivity. There is evidence that in patients with low BP, a reduction in
OPP reduces OBF owing to autoregulatory changes and defective adap-
tations.40 Ramli et al. found that the nocturnal supine BP parameters and
OPP in the NTG group were significantly lower than in normal controls.80

Their findings indicated that there may be defective autoregulatory
mechanisms in NTG patients. Lindeman et al. revealed that alterations in
BP combined with the heart rate suggest impaired BP regulation in
glaucoma patients, particularly NTG patients.81 These results implied
that vascular regulation or dysregulation may play an important role in
the GON pathogenesis. Barbosa-Breda et al. compared a large cohort of
NTG and POAG patients using several different vascular-related devices,
and found that NTG patients displayed more signs of vascular
dysfunction.82

5. Vascular dysregulation

It has been suggested that vascular dysregulation is a major factor in
GON pathogenesis in NTG.83,84 Some NTG patients displayed changes in
OBF autoregulation; moreover, they also showedmore extensive vascular
dysfunction known as primary vascular dysregulation (PVD). Primary
vascular dysregulation syndrome, which was first proposed by Josef
Flammer, describes a phenotype comprising PVD together with a cluster
of associated symptoms and signs that can occur in healthy subjects and
those with disease.79 This syndrome was then later renamed "Flammer
Syndrome" by K. Konieczka et al..85

5.1. Flammer syndrome

Flammer syndrome occurs more prevalently among females, slender
subjects, Asians, those with indoor jobs, and academics.86 These symp-
toms begin to manifest in adolescence and mitigate with age. Moreover,
Flammer syndrome has a hereditary component and is not caused by
another disease.85 There is currently no single gold standard for the
diagnosis of Flammer syndrome. However, in clinical practice, testing
may not always be necessary because there are certain signs and symp-
toms that clearly indicate Flammer syndrome, including: 1) Cold ex-
tremities (cold hands or feet); 2) Low BP; 3) Being exceptionally sensitive
(smell, pain, vibration, high altitude, response to drugs, etc.); 4) Shifted
circadian rhythm; 5) Prolonged sleep onset time; 6) Reduced feelings of
thirst.79

Regarding the circulation, subjects with Flammer syndrome have an
inborn predisposition to respond differently to all types of stimuli
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(including cold, mechanical or emotional stress, and particularly stimuli
related to blood vessels). The most clear pathological reaction is vaso-
constriction (vasospasm). Due to vascular disorders, the response of
Flammer syndrome patients to BP and IOP is also altered, resulting in
instability of the OPP and OBF. Morphologically, the retinal vessels
demonstrate a higher level of irregularity and are stiffer, with a reduced
vasodilation occurring in response to flickering light.87 In a provocation
with hand-grip test, their choroidal vessels showed a more vasocon-
strictive response compared with control subjects.88 This complex regu-
latory dysfunction results in incomplete adaptation to stimului which in
turn, leads to unstable ocular perfusion.

That Flammer syndrome is a risk factor for GON may explain the risk
factors for NTG such as sex and ethnic origin. Indeed, Flammer syndrome
is also a main cause of splinter hemorrhages at the border of the ONH,
which may explain why ONH hemorrhages occur frequently in NTG
patients. Optic disc hemorrhages are commonly observed in glaucoma
patients, particularly in NTG, and occur more frequently in Flammer
syndrome patients.89 Josef Flammer suggested that this may be a result of
a disturbed blood-retina barrier.72,90 Subjects with Flammer syndrome
also exhibit increased retinal venous pressure (RVP). High RVP can
reduce the PP and therefore reduce circulation of both the retina and the
ONH.91 Such dysregulation is probably the result of a local increase in
vasoactive factors, including endothelin-1 (ET-1). Compared with
healthy controls, higher ET-1 levels were observed in glaucoma patients,
particularly those with NTG who usually suffer from Flammer syn-
drome.92,93 Moreover, Flammer syndrome in NTG is also associated with
retinal astrocyte activation, increased oxidative stress, and diffuse visual
field defects.85 The complex regulatory dysfunction can lead to an
incomplete adaptation to stimuli, resulting in unstable ocular perfusion.
This instable blood flow leads to mild but repeated reperfusion, which
contributes to glaucomatous damage through oxidative stress.94

5.2. Vasospasm and migraine

Migraine is currently considered to be a neurovascular syndrome,
which is associated with transient vasospastic episodes, leading to the
impairment of autoregulation of blood flow in the central nervous sys-
tem.95 There is an association between migraine and Flammer syndrome.
Although migraine and Flammer syndrome have some common features,
there are some distinct differences. Vasoconstriction is the most obvious
pathological reaction in Flammer syndrome, hence, Flammer syndrome
was previously classified as a vasospastic syndrome.85 Ischemia due to
vasoconstriction is considered to be a potential risk factor for the
development of glaucomatous visual field damage.79,96 Vasospasm refers
to the reversible disproportionate contraction of the arteries, resulting in
a temporary decrease or shortage of the blood supply to the corre-
sponding organ. Vasospasm is common and associated with a variety of
diseases, for example, in the retina, particularly in the case of mi-
graines.85 Previous studies have demonstrated that vasospasm leads to
environmental disturbances in blood flow, increasing the vulnerability of
the ONH to vascular challenges, leading to instability of perfusion,
changes in ischemia, reperfusion injury, and the loss of ONH axons.97 In
addition, migraines can cause a temporary decrease of OBF.98 Gramer
et al. found a relationship between migraine and vasospasm in a large
number of glaucoma patients. They also found that migraine was asso-
ciated more with NTG than HTG.99 To date, the association of migraine
and NTG has been formally confirmed in many studies, with migraines
being a risk factor for NTG progression.27,100,101 Moreover, it has been
reported that subjects with vasospastic disorders, including Raynaud’s
phenomenon, also have a prevalence of migraine.102 Consequently, both
migraine and vasospasm may be risk factors for NTG.

In addition, abnormal variations in blood vessel diameter are com-
mon in peripheral organs, including the fingers and eyes of individuals
with migraine.79,103 These blood vessel alterations are assumed to be a
sign of vasospasm, or more broadly, for Flammer syndrome.85 Retinal
vascular dysregulation and poor blood flow at the ONH have been
4

implicated in NTG; several studies have proposed that NTG and migraine
have a common vasospastic mechanism.104 Flammer syndrome subjects
suffer more frequently from migraines. It has been reported that vaso-
spasm could underlie the occlusions of the retinal vasculature in migraine
patients.105 Dadaci et al. hypothesized that the expression of neurogenic
inflammation in the eye contributes to the autonomic dysfunction and
alteration of ocular circulation in migraine in glaucoma.106 It is true that
autonomic nervous dysfunction is present in glaucoma, PVD, and
migraine. But in these diseases, clear dysregulations were also found of
the retinal blood vessels, although they are not autonomically inner-
vated. A decreased blood flow in the ocular artery is associated with
glaucoma progression. A history of migraines constitutes an important
and independent risk factor for optic disc hemorrhage.27 Furthermore,
NTG patients with a concurrent history of migraine are more likely to
progress in terms of visual field defects.100 These findings indicated that
the vasculature remains a potential factor in the pathogenesis of both
NTG and migraine.

5.3. Reperfusion damage

Amild but recurrent BF decrease is primarily due to the fluctuation of
OPP and disturbance of autoregulation, resulting in an unstable and
insufficient oxygen supply, thus increasing local mitochondrial oxidative
stress.107,108 Oxidative stress is induced by an imbalance between the
production of reactive oxygen species and their elimination by antioxi-
dants, which results in damage to cellular macromolecules and ultimately
leads to cellular and tissue dysfunction and even mortalit.109 Reperfusion
caused by unstable ocular perfusion is the major cause of oxidative stress,
mainly occurring in the ONH. Perfusion instability is present both in
patients with a high IOP or a low IOP that exceeds their ability to regu-
late, as well as in patients with a normal IOP or BP (if the patient has
disturbed autoregulation). Disturbed autoregulation occurs predomi-
nantly in patients with Flammer syndrome. By interfering with the
autoregulation, the sensitivity to a BP reduction is increased.40,72

Increasing evidence has demonstrated that oxidative stress is involved in
the loss of RGCs in NTG, and plays an important role in GON
pathogenesis.109–111

Systemic DNA damage as the pathomechanism of glaucoma is iden-
tifiable by the markers of oxidative stress, including urinary 8-hydroxy-
2’-deoxyguanosine (8-OHdG) and total antioxidant status. Yuki et al.
found that the levels of urinary 8-OHdG/creatinine were increased
significantly in subjects with progressive NTG compared with patients
with nonprogressive NTG.112 Urinary 8-OHdG levels have recently been
reported to be associated with the ONH circulation, particularly in
early-NTG patients.113 Mozaffarieh et al. revealed that POAG patients
with PVD have a significantly higher rate of DNA breaks in circulating
lymphocytes than both POAG patients without PVD and healthy con-
trols.114 Although many details of the relationship between oxidative
stress and NTG remain strongly debated, further studies will reveal the
association between DNA damage and NTG. Unlike damaged DNA,
damaged proteins cannot be repaired. Wunderlich et al. suggested that
the upregulation of 20S proteasome alpha-subunit levels indicated an
increased oxidative stress in glaucoma patients.115

The microcirculation is mainly regulated via endothelial-derived
vasoactive factors, including ET-1 and nitric oxide (NO). This regula-
tion of endothelial cells is crucial to the ability of cells to adapt to vari-
ations in PP (autoregulation).116 ET-1 significantly induces
vasoconstriction by interacting with its receptors. Various studies
demonstrated a systemic endothelium-derived vascular dysfunction in
NTG.117-119 Oxidative stress leads to elevated ET-1 expression. A large
number of studies have shown an elevated ET-1 level in glaucoma pa-
tients, particularly in patients with progressive neuropathy despite hav-
ing a normalized IOP.120, 121 By contrast, NO primarily promotes
vasodilation. Astrocyte activation leads to increased NO production, and
if accompanied by a high concentration of superoxide (O2-) due to
reperfusion, highly damaging peroxynitrite can be produced.122, 123
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Neufeld et al. suggest that the glaucomatous ONH is exposed to excessive
NO levels, which may be neurodestructive, locally, to the axons of the
RGCs.124 Metalloproteinases are upregulated in the ONH of glaucoma
patients. An upregulation of matrix metalloprotein-9 was found in
circulating lymphocytes in NTG patients, which may be a consequence of
reperfusion injury.125

6. Regulation of ocular blood flow

The mainstream treatment for all types of glaucoma, including NTG,
is IOP reduction. The Collaborative Normal Tension Glaucoma Study
demonstrated that a 30% IOP reduction may slow NTG progression.126

Some subjects may continue to progress even if their IOP is on target,
leading to the need to develop new treatments. With the advances in the
understanding of NTG pathogenesis, several new therapeutic approaches
have been developed, some of which are already in clinical use, while
others are still under experimental research. The IOP-independent
management of NTG, including vascular regulation and neuro-
protection, provide alternative therapeutic options for NTG patients.

All theories regarding NTG development and the vascular etiology
derive a general conclusion, that is, there is an interruption of the blood
flow in the optic nerve.127 Ischemic changes involved are not only the
result of an insufficient blood flow, but also an imbalance or fluctuation
of the circulation around the optic nerve, which leads to
ischemia-reperfusion injury. Therefore, several drugs that act on OBF
have been investigated. Gasser and Flammer first investigated the cal-
cium channel blockers (CCBs) as potential therapeutic applications to
improve ocular perfusion.128 Since then, a range of reports found that
CCBs, including nimodipine, normalize the retinal circulation together
with vasospastic symptoms and increase the ONH and choroidal blood
flow in NTG patients.129,130 Nimodipine also has the capacity to reverse
the effects of ET-1 on ocular blood vessels.131 Furthermore, CCBs are also
believed to have neuroprotective properties.132 Toriu et al. reported that
lomerizine protects neuronal cells against retinal neurotoxicity both in
vitro and in vivo.133 However, there is concern that a systemic hypo-
tensive effect, via peripheral vasodilation in the case of CCBs, may
exacerbate glaucomatous damage by decreasing the diastolic OPP to the
optic nerve.134 Under normal condition, the doses we used were very low
that hardly ever lower BP but it does have an effect on NTG.135 In
addition, some side effects, including peripheral edema, may limit the
utility of CCBs for certain patients.136

An additional component of NTG treatment is neuroprotection. Many
researchers are currently investigating the potential use of natural sub-
stances as an adjuvant therapy for glaucoma. Ginkgo biloba extract (GBE)
is a phytochemical that is widely used in medicine. Several studies sug-
gested that, as a neuroprotective and antioxidative agent, it shows a
benefit in the management of neurological and vascular conditions.137

Chung et al. revealed the neuroprotective properties of a ginkgo extract
(EGb761) in brain ischemia.138 In clinical trials, GBE was shown to delay
the progression of visual field defects in NTG patients.139 It was also
found that GBE improved peripapillary blood flow in NTG patients
compared to a control group.140 Another phytochemical currently under
investigation is resveratrol, which is found in fruits and red wine, and is
reported to have antioxidative and anti-inflammatory properties.141,142

Resveratrol is currently being investigated for neuroprotective qualities
in the treatment of glaucoma and other ophthalmic diseases.143

7. Vascular treatment

Most of the literature emphasizes that IOP lowering is the only proven
glaucoma therapy, and occasionally points out that blood flow evaluation
is not useful in glaucoma because of the lack of therapeutic conse-
quences.43 Is such a statement still fully valid?

Pharmacological treatment of the vascular disorders in glaucoma
requires a suitable drug and controlled long-term studies showing that
such treatment improves prognosis. A prerequisite for the development
5

of such a drug by the pharmaceutical industry is an agreement in the
scientific community that a vascular problem exist and is relevant to the
disease. While individual investigators have described circulatory dis-
turbances in glaucoma for decades,35 it is only with the recent intro-
duction of OCTA that this has become apparent to all ophthalmologists.58

Another point of contention has been whether the reduction in blood
flow is only secondary to the glaucoma damage or increased intraocular
pressure, or whether it is primary. There is no doubt that a loss of sub-
stance decreases blood flow. It is also clear that increased IOP decreases
blood flow, especially when autoregulation is impaired. However, the
fact that ocular blood flow disturbance often precedes visual field dam-
age, that blood flow disturbance can be measured not only in the eye but
also in other organs of glaucoma patients, and that a short-term phar-
macologically induced increase in blood flow leads to a transient
improvement in visual fields,144 whereas an induced decrease in blood
flow leads to a transient deterioration of visual fields,145 speaks in favor
of an additional primary vascular component.

However, in order to develop an effective drug, we also need to know
the nature of the perfusion disorder in glaucoma. It is well known that
low PP reduces blood flow to the eye, especially when autoregulation is
disturbed and thus worsens the prognosis. The question here is which is
more promising, increasing PP or improving regulation. Severe athero-
sclerosis can also reduce ocular perfusion, but it is hardly treatable.
However, relatively new and therapeutically promising is the observa-
tion that vascular dysregulation is a common cause of NTG.79 While
smaller, uncontrolled studies have already shown that regulation can be
improved,128 larger controlled studies are imperative. We illustrate this
with the example of increased RVP. The retinal veins are often dysre-
gulated in glaucoma patients. As a result, venous pressure increases and
PP decreases.91 A first promising study has shown that this RVP can be
lowered with vitamin supplementation containing L-methylfolate (Ocu-
folin® forte).146,147

While we still have a long way to go before we have a widely
accepted, evidence-based vascular treatment for glaucoma, ophthalmol-
ogists already have therapeutic options other than only further lowering
intraocular pressure in patients with progressive glaucoma damage
despite well-controlled IOP.135

8. Conclusions

In summary, NTG is a multifactorial and complicated disease, the
pathogenesis of which involves vascular factors. OBF is the main factor
contributing to the progression of NTG-related GON. PVD, the essential
component of Flammer syndrome, leads to OBF instability in the ONH,
which in turn locally increases oxidative stress. The methods to evaluate
OBF are developing with the greater understanding of the role of OBF in
NTG. As described in this review, the novel methodologies employed
have their own unique advantages and can be used as reliable mea-
surement methods of OBF status. Recently, accumulated evidence has
suggested that an association of compromised vasculature with NTG
pathogenesis urges us to pay greater attention to IOP-independent ther-
apy of NTG, in addition to decreasing the IOP.
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